If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+16x-38=0
a = 1; b = 16; c = -38;
Δ = b2-4ac
Δ = 162-4·1·(-38)
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{102}}{2*1}=\frac{-16-2\sqrt{102}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{102}}{2*1}=\frac{-16+2\sqrt{102}}{2} $
| -3(s+2)=-27 | | 11p-6p+3p-7p-1=7 | | 13x-2x-11x+2x+3x=20 | | 5x–4=3x+10 | | 7a-9+4a=26 | | 20b-11b-2b=14 | | g-g+4g+2g=18 | | y=0.216(550)+19.85 | | -13d+13d+-7d+9d+9d=-11 | | 52=v-4= | | -14s+-10s+14s+-2s+-2=10 | | 8b+12=¼(8b+12) | | 17h+h-16h=20 | | 2/5+7/10x=1/2 | | 13s+3s-14s-s+2=14 | | 14p-7p-5=16 | | 5t-4t-1=19 | | .5x=-5.x+4 | | 9j-5j-3j=6 | | -10g-g+-2g+16g=18 | | 8n-3n+2n+4n-n=20 | | 11n-9n-n-1=7 | | 12+8a=44 | | 15-42/b=8=b= | | 17t+-20t-7t-6t+-16=0 | | x+2(x=1)+3(x+2)=4(x+3) | | 17g-15g+4g-g+3g-1=7 | | -x2-x+35=29 | | 8d-d+4d-6d=15 | | 18g-11g-3=4 | | 12(m-3)=4 | | 0.36a+4.8=0.06a-1.2 |